『株式会社ずんだもん技術室AI放送局』のカバーアート

株式会社ずんだもん技術室AI放送局

株式会社ずんだもん技術室AI放送局

著者: 株式会社ずんだもん技術室AI放送局
無料で聴く

このコンテンツについて

AIやテクノロジーのトレンドを届けるPodcast。平日毎朝6時配信。朝の通勤時間や支度中に情報キャッチアップとして聞いてほしいのだ。(MC 月:春日部つむぎ、火水木:ずんだもん、金:お嬢様ずんだもん)
エピソード
  • 私立ずんだもん女学園放送部 podcast 20250627
    2025/06/26
    関連リンク Gemini CLI : オープンソース AI エージェント Google Cloudが、開発者のための新しいAIツール「Gemini CLI」を発表しました。これは、皆さんが普段使っているコマンドライン(CLI、またはターミナルとも呼ばれます)から、Googleの強力なAI「Gemini」の機能を直接使えるようにする、画期的なツールです。 エンジニアにとって、コマンドラインは日々の作業に欠かせないツールですよね。Gemini CLIを使うと、AIがコーディングを支援してくれるだけでなく、文章の生成、問題解決のアイデア出し、詳しい情報のリサーチ、さらには日々のタスク管理まで、幅広い作業を手助けしてくれます。まるで、ターミナルの中に賢いAIアシスタントがいるようなイメージです。 特に注目すべきは、GoogleのAIコーディングアシスタント「Gemini Code Assist」と同じ技術を共有している点です。これにより、ターミナルだけでなく、皆さんが使っている開発環境(例えばVS Code)でも、AIがコードの作成や修正、デバッグなどを手伝ってくれるようになります。 個人で開発を進めている皆さんにも嬉しい無料利用枠が用意されており、高機能なGemini 2.5 Proモデルを、1日に最大1,000回、1分間に60回まで無料で利用できます。これだけあれば、ほとんどの個人開発者は制限を気にせずAIを活用できるでしょう。 また、Gemini CLIは完全にオープンソース(Apache 2.0ライセンス)として公開されています。これは、世界中のエンジニアが自由にコードの中身を確認したり、新しい機能の提案をしたり、一緒にツールを改善したりできることを意味します。Google検索と連携してAIが最新のウェブ情報を参照したり、独自のAIへの指示(プロンプト)を設定して特定の作業に特化させたりすることも可能です。さらに、スクリプトに組み込んで、繰り返し行うタスクをAIに自動で処理させることもできるため、日々の開発ワークフローを大きく効率化できる可能性があります。 Gemini CLIは、これからの開発者の働き方を大きく変える可能性を秘めた、強力で開かれたツールです。インストールも簡単で、すぐに使い始められますので、ぜひ一度試してみて、皆さんの開発体験をアップグレードしてみてください。 引用元: https://cloud.google.com/blog/ja/topics/developers-practitioners/introducing-gemini-cli/ Claude Codeを使い倒す方法 AIアシスタント「Claude Code」(大規模言語モデルを活用した開発ツール)を最大限に活用するための、実践的なタスク管理術が解説されています。せっかく有料プランを契約しても、「どのようなタスクを任せればいいか分からない」「AIが作ったコードのレビューが大変で、結局自分が作業の遅れの原因(ボトルネック)になってしまう」といった悩みは、多くの新人エンジニアにも共通するかもしれません。 この記事では、この課題を解決するため、タスクを「その仕事が事業にどれだけ重要か(ビジネス価値)」と「自分がどれだけ深く関わる必要があるか(自分の関与度)」の2つの軸で整理する「4象限戦略」を提案しています。 具体的には、以下の4つの象限に分けてAIアシスタントとの関わり方を変えます。 第1象限:事業価値が高く、自分が深く関わる「コア機能開発」 プロダクトの競争力に直結する重要な機能開発や設計がここにあたります。AIはあなたの「ペアプログラミングのパートナー」や「設計の壁打ち相手」として活用します。実装はAIに任せつつも、レビューは特に念入りに行い、あなたの設計力や問題解決能力を高めるために使います。 第2象限:事業価値が高く、ある程度任せられる「共同開発タスク」 既存機能の拡張や、緊急ではないけれど重要なバグ修正などが該当します。AIには明確な仕様を伝えて実装を任せ、進捗を定期的に確認し、最終レビューを行います。あなたが第1象限の重要なタスクに取り組んでいる間に、AIが並行してこれらのタスクを進めてくれるイメージです。 第3象限:開発効率化のためで、完全に任せられる「自動化タスク」 テストコードの追加、開発環境の自動化(CI/CDの改善)、定型的なリファクタリング、ドキュメント生成など、AIに「丸投げ」できるタスクです。...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20250626
    2025/06/25
    関連リンク Gemini CLI: your open-source AI agent Googleは、開発者向けに「Gemini CLI(Command Line Interface)」という新しいオープンソースのAIエージェントを発表しました。これは、GoogleのAIモデルであるGeminiの強力な機能を、皆さんが普段利用しているターミナル(コマンドライン)で直接使えるようにするツールです。 このツールの最大の目的は、開発者の作業を効率化することにあります。コードの生成、プログラムの問題解決(デバッグ)、情報検索、日々のタスク管理など、様々な開発作業をAIの力を借りてよりスムーズに進められるようになります。 Gemini CLIの主な特徴は以下の通りです。 オープンソースであること: Apache 2.0ライセンスで公開されており、誰でもコードの中身を確認したり、開発に貢献したりできます。これにより、ツールの透明性が高く、セキュリティ面でも安心して利用できます。また、開発者が自分のニーズに合わせて機能を拡張できる柔軟性も持っています。Gemini 2.5 Proモデルへのアクセス: 最先端のGemini 2.5 Proモデルを利用でき、100万トークンという非常に大きなコンテキストウィンドウ(一度に扱える情報量)を持つため、複雑なリクエストにも対応できます。充実した無料利用枠: 個人の開発者は、個人用のGoogleアカウントでサインインし、Gemini Code Assistの無料ライセンスを利用することで、1分あたり60リクエスト、1日あたり1,000リクエストまで無料でGemini CLIを使うことができます。これは業界でもトップクラスの利用量です。多様な機能連携: Google検索と連携してリアルタイムな情報を取得し、プロンプトの回答精度を高める「グラウンディング」機能や、独自の拡張機能を追加できる仕組み(Model Context Protocol)も備わっています。また、プロンプトや指示をカスタマイズしたり、スクリプトに組み込んで作業を自動化したりすることも可能です。 さらに、Gemini CLIはGoogleのAIコーディングアシスタント「Gemini Code Assist」と同じ技術基盤を共有しています。これにより、VS Codeなどの統合開発環境(IDE)でも、Gemini CLIと同様の強力なAIエージェント機能(例えば、複雑なタスクを複数ステップで計画・実行する「エージェントモード」)が利用でき、ターミナルとIDEの両方でシームレスなAI開発体験が得られます。 この新しいツールは簡単に導入でき、日々の開発作業を大きく変える可能性を秘めています。 引用元: https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/ MUVERA: Making multi-vector retrieval as fast as single-vector search このGoogleの研究ブログ記事は、情報検索(IR)の分野で使われる「マルチベクトル検索」を高速化する新しい技術「MUVERA」について紹介しています。情報検索は、膨大なデータの中からユーザーが知りたい情報(例えばLLM(大規模言語モデル)の「RAG(Retrieval Augmented Generation)」機能で使う知識など)を素早く見つけ出すための重要な技術です。 最近の情報検索では、文章などをコンピュータが扱いやすい数値の並び「ベクトル(埋め込み)」に変換して、ベクトル同士の似ている度合い(類似度)を計算することで、関連する情報を探すのが一般的です。これまでの「単一ベクトル検索」は、一つのデータに一つのベクトルを割り当て、高速に検索できましたが、情報が複雑になると検索の精度に限界がありました。 そこで、より高度な「マルチベクトルモデル」が登場しました。これは、一つのデータに対して複数のベクトルを生成することで、よりきめ細かく情報を表現でき、検索精度を大きく向上させることができます。しかし、たくさんのベクトルを扱い、複雑な方法で類似度(「Chamfer類似度」など)を計算するため、検索に時間がかかってしまうという課題がありました。 MUVERA(Multi-Vector Retrieval via Fixed Dimensional Encodings)は、この「マルチベクトル検索は精度が高いけれど遅い」という問題を解決するための技術です。MUVERAは、複雑なマルチベクトルの情報を「FDE(Fixed Dimensional Encoding)」という、たった一つのシンプルな単一ベクトルに変換します。このFDEは、元のマルチベクトル間の複雑な類似度を、単一ベクトルで使...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20250625
    2025/06/24
    関連リンク Claude Codeとplaywright mcpを連携させると開発体験が向上するのでみんなやろう この記事では、AI開発ツール「Claude Code」と、ブラウザ操作を自動化する「Playwright MCP」を連携させることで、開発効率が大きく向上するという実践的な方法が紹介されています。 Playwright MCPは、Webブラウザ(Chromeなど)をプログラムから操作するためのツール「Playwright」を、AIアシスタントから利用できるようにしたものです。この連携の最大のメリットは、Claude Codeが生成したコードが実際に動作するかを、その場でブラウザを使って自動的に確認できるようになる点にあります。 これまでのAI開発では、「Claude Codeが『できました!』と言うけれど、実際に動かしてみるとエラーだらけで全然動かない…」という経験が少なくありませんでした。しかし、Playwright MCPと連携させることで、Claude Codeがコードを生成した後、すぐにPlaywright MCPを使ってそのコードをブラウザで実行し、期待通りに動くか確認できるようになります。これにより、開発者がコードを試す前にAIが自己デバッグを行うようになるため、「想像でコードを書く→動かない→修正」という非効率なループから抜け出し、「想像でコードを書く→ブラウザで試す→動くことを確認してから提出」という、よりスムーズで信頼性の高い開発フローを実現できます。特に、WebページのUI(ユーザーインターフェース)の動作確認など、AIが苦手としがちなタスクでの効果が期待できます。 この連携を実現するには、Claude Codeの設定ファイルにPlaywright MCPを認識させるための記述を追加する必要があります。具体的には、~/.claude.jsonや専用の設定ファイルに、Playwright MCPの実行コマンドやブラウザの起動オプションなどを設定します。また、Claude Codeに「Playwright MCPツールだけを使ってブラウザ操作を行うこと」「エラーが発生したらすぐに報告すること」といったルールを明確に指示するために、CLAUDE.mdというファイルに専用のガイドラインを追記することが推奨されています。これにより、AIが余計なコード実行を試みることなく、意図した通りのブラウザ操作に集中するようになります。 このように、Claude CodeとPlaywright MCPを連携させることで、AIを活用した開発の信頼性と効率性を飛躍的に高めることができ、新人エンジニアの方々も安心してAIと一緒に開発を進められるようになるでしょう。 引用元: https://zenn.dev/sesere/articles/4c0b55102dcc84 FilMaster: Bridging Cinematic Principles and Generative AI for Automated Film Generation この研究論文「FilMaster」は、AIを使って本格的な映画を自動で作り出す新しいシステムについて紹介しています。これまで、AIが作る映像は「映画らしさ」が足りず、カメラワークや映像と音のテンポ(映画的なリズム)が単調になりがちでした。これは、プロの映画制作で重要とされる「映画制作の原則」が十分に反映されていなかったためです。 FilMasterは、この課題を解決するために開発されました。このシステムは、以下の2つの主要な考え方に基づいて作られています。 実際の映画から「映画らしさ」を学ぶ: 膨大な量の映画データから、プロが使うカメラワークや演出のノウハウをAIに学習させます。観客目線で「編集作業」を再現する: 映画制作における撮影後の編集(ポストプロダクション)プロセスを、観客がどう感じるかを重視してAIが行うように設計されています。 FilMasterの映像生成プロセスは、大きく2つの段階に分かれています。 1. 参照ガイド付き生成ステージ: ユーザーが入力した内容(例えば「こんなシーンを作りたい」という指示)をもとに、AIが実際のビデオクリップを生成します。この段階では、44万もの映画クリップのデータベースを参照し、そこから最適な「お手本」を探し出して、プロのようなカメラの動きやアングル(カメラ言語)を持つ映像を作り出すのが特徴です。まるで、優秀なアシスタントが過去の名作からヒントを得て映像のアイデアを出してくれるようなイメージです。 2. 生成ポストプロダクションステージ: 生成された「生の映像素材」を、さらに映画らしく編集する段階です。ここでは、...
    続きを読む 一部表示
    1分未満

株式会社ずんだもん技術室AI放送局に寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。