
BITESIZE | Hacking Bayesian Models for Better Performance, with Luke Bornn
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
Today’s clip is from episode 131 of the podcast, with Luke Bornn.
Luke and Alex discuss the application of generative models in sports analytics. They emphasize the importance of Bayesian modeling to account for uncertainty and contextual variations in player data.
The discussion also covers the challenges of balancing model complexity with computational efficiency, the innovative ways to hack Bayesian models for improved performance, and the significance of understanding model fitting and discretization in statistical modeling.
Get the full discussion here.
- Intro to Bayes Course (first 2 lessons free)
- Advanced Regression Course (first 2 lessons free)
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!
Visit our Patreon page to unlock exclusive Bayesian swag ;)
Transcript
This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.