
The Riemann Integral Part 1 - Step functions
カートのアイテムが多すぎます
ご購入は五十タイトルがカートに入っている場合のみです。
カートに追加できませんでした。
しばらく経ってから再度お試しください。
ウィッシュリストに追加できませんでした。
しばらく経ってから再度お試しください。
ほしい物リストの削除に失敗しました。
しばらく経ってから再度お試しください。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
The present episode asks a new question: How can one compute the area under the function graph of a real-valued function defined on an interval? It turns out that this question is not entirely trivial to answer. In order to have a first clear understanding of some pitfalls, we treat an elementary example case first: We discuss the notion of a step function. Then, the area under function graph — the Riemann integral — can be computed as a sum of certain rectangles. Before we embark to more challenging situations, we shall see that the so defined integral will be well-defined for step functions.