『The Riemann Integral Part 1 - Step functions』のカバーアート

The Riemann Integral Part 1 - Step functions

The Riemann Integral Part 1 - Step functions

無料で聴く

ポッドキャストの詳細を見る

このコンテンツについて

The present episode asks a new question: How can one compute the area under the function graph of a  real-valued function defined on an interval? It turns out that this question is not entirely trivial to answer. In order to have a first clear understanding of some pitfalls, we treat an elementary example case first: We discuss the notion of a step function. Then, the area under function graph — the Riemann integral — can be computed as a sum of certain rectangles. Before we embark to more challenging situations, we shall see that the so defined integral will be well-defined for step functions.

The Riemann Integral Part 1 - Step functionsに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。